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Abstract 

Background:  Ratooning in sugarcane is a crucial strategy for ensuring the long-term sustainability of the sugarcane 
industry. Knowledge gap relating to the interaction between rhizosphere microbiome and ratooning crop, particu-
larly the impact of different sugarcane cultivars on the rhizosphere microbiome in consecutive ratooning, requires 
additional research. The response of two different sugarcane cultivars, viz ZZ-1 and ZZ-13, were evaluated in consecu-
tive ratooning towards the rhizosphere microbial community and cane morphological characters.

Results:  Significant changes in the rhizosphere microbiome were observed in the second ratooning over the years. 
Several important genera were observed in high abundance during the second ratooning, including Burkholderia, 
Sphingomonas, Bradyzhizobium, and Acidothermus. Cultivar ZZ-13 caused more alterations in the rhizosphere micro-
biome than ZZ-1, resulting in a more favorable rhizosphere environment for sugarcane growth. The genotypes also 
varied in terms of nutrients and enzyme activity over the years. There were significant differences between the geno-
types and year for number of stalks and yield was significant for genotypes, years and genotype × year.

Conclusion:  This finding will help to understand thorough interactions between rhizosphere microorganisms and 
ratoon sugarcane and lay the foundation for promoting and maximizing yield as far as possible. In the future, this 
work can serve as guidance in sugarcane husbandry, mainly in Guangxi, China.
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Introduction
Sugarcane (Saccharum officinarum L.), the first signifi-
cant sugar crop worldwide, is an important cash crop in 
tropical and subtropical countries. Sugarcane plays a cru-
cial role in farmer economics and provides raw materials 
to the industry in Southern China [1]. Ratooning is the 
ability of sugarcane to maintain yield, a desirable char-
acter to improve the economics of sugarcane production 

[2], which is a common practice worldwide and accounts 
for almost 50% of the total sugarcane planting areas. The 
sugarcane characteristics associated with ratooning have 
been studied for possible use in selection criteria while 
breeding for new varieties [3]. The yield in ratoon crops 
usually decreased due to the quality degradation with 
age, disease and pests for a prolonged time [4].

Limited irrigation and the increasing average tempera-
ture on the earth surface have affected sucrose accumu-
lation during the ripening and maturation [5, 6]. Ratoon 
(stubble) crop arises from the buds under the ground 
from previously harvested crops [5]. Compared to plant 
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crops, ratoon crops typically need less agronomic inputs 
[7], such as fertilizers, pesticides, etc., to achieve compa-
rable yields. It has been suggested that ratoon crops pro-
vided with additional 25–50% nitrogen fertilizers [5] will 
sustain their yield similar to plant crops. The mortality of 
tillers and excess nitrogen inputs ultimately affect the dry 
matter accumulation of ratoon crops, making it necessary 
to examine the external root environment (rhizosphere).

The rhizosphere, first coined in 1904, was defined as 
the soil adhering to the surface of roots, which is affected 
directly by the root system [4]. Apart from water and 
nutrient uptake, secondary metabolites secreted by the 
roots, such as carbohydrates and organic acids, provide 
a favorable environment for the growth and reproduction 
of rhizosphere microbiota [8]. Therefore, many rhizo-
sphere activities, such as material and energy exchange, 
plant-soil microbe interactions, are carried in the pres-
ence of active soil microbes [9, 10]. Roots provide an 
optimal location for the microbes to aggregate and 
interact with plants [11]. Root phenes such as structure 
might be one factor influencing microbial communities’ 
assembly, depending on nutrients availability, metabolic 
pathway, surface area and biotic, and abiotic stresses [12, 
13]. Effect of rhizosphere influencing abiotic stress mech-
anism have been reported in many crops [14, 15]. The 
microbial community in the rhizosphere differs signifi-
cantly from that of other soil, such as bulk soil [16]. Vari-
ous studies revealed that the rhizosphere microbiome is 
affected by numerous factors, including the microbes’ 
growth conditions, developmental stages and even con-
tinuous cropping [17–19].

Consecutive monoculture is a common practice in 
sugarcane. Limited studies have been conducted on the 
selective enrichment of microbial communities through 

different nitrogen fertilizer rates [20]. Though micro-
bial community structures differ among plant species, 
informative studies concerning the distinctness of micro-
bial communities in consecutive ratoons are lacking. 
Therefore, our research was focused on: 1) high through-
put sequencing to investigate rhizosphere bacterial 
communities in consecutive sugarcane ratoon crops, 2) 
response of rhizosphere microbiome towards consecu-
tive ratooning, and 3) their effect on plant performance 
and yield.

Results
Plant morphological characters and yield of ratooning 
sugarcane
Analysis of variance revealed significant differences 
(P ≤ 0.05) for the sugarcane morphological traits among 
genotypes except for plant height and brix % among the 
years (Table 1). The results showed a 9.12 and 15.69% for 
ZZ-13 and ZZ-1 stem diameter increase in 2020 com-
pared to 2019, respectively. Stem diameters and sucrose 
content of ZZ-1 were recorded higher by 15.69 and 3.59% 
in 2020 over 2019, respectively. Single stalk weight in 
ZZ-13 and ZZ-1 increased by 9.33 and 25.8% respec-
tively in 2020. While nodes, plant height, internode, the 
number of stalks, and yield of ZZ-13 were decreased by 
4.21, 8.8, 12.3, 27, and 21%, respectively, during 2020 
than 2019. Similarly, for the ZZ-1 genotype, plant height, 
internode length, the number of stalks and yield were 
reduced by 5.9, 18.1, 15.4, and 22%, while SSW and yield 
increased by 25.8 and 5% in 2020, respectively, as com-
pared to 2019. In general, our results showed reductions 
in all traits in 2020 compared to 2019 except stem diame-
ter of both genotypes, nodes, sucrose content and yield of 

Table 1  Morphological, sugar content and yield attributes of consecutive ratooning sugarcane

Each value is the mean of three replicates with standard error

S D Stem diameter, P H Plant height, IN L Internode length, SSW Single stalk weight
* P < 0.01
** P < 0.001

Genotypes NODES (no) S D (cm) P H (cm) IN L (In) BRIX (%) SSW (kg) No of stalks (ha−1) Yield (t ha− 1)

2019
  ZZ-13 23.72 ± 1.11b 2.74 ± 0.18b 291.4 ± 9.54a 4.6 ± 0.20a 16.3 ± 0.25a 1.5 ± 0.13a 82,270 ± 7774a 125.32 ± 20.7a

  ZZ-1 23.7 ± 1.99b 2.23 ± 0.18c 270.6 ± 5.09b 4.4 ± 0.16a 13.8 ± 1.46b 0.93 ± 0.19c 59,900 ± 8480b 56.28 ± 5.46c

2020
  ZZ-13 22.72 ± 0.63b 2.99 ± 0.15a 263.9 ± 6.80bc 4.03 ± 0.13b 16.2 ± 0.39a 1.64 ± 0.03a 59,959.33 ± 7135b 98.47 ± 7.99b

  ZZ-1 30.20 ± 1.62a 2.58 ± 0.08b 254.6 ± 8.27c 3.6 ± 0.17c 14.4 ± 0.52b 1.17 ± 0.06b 50,653.33 ± 2800b 59.47 ± 6.06c

SOV
  Genotypes 18.44 * 56.76* 8.06 ns 4.79 ns 22.46 ** 65.81 * 12.60 * 331.8 ***

  Year 10.03 * 24.12 ** 18.00 * 38.22 * 0.05 ns 6.85 ns 12.51 * 17.99 **

  Genotype×Year 18.64 * 0.45 ns 1.58 ns 3.99 ns 0.82 ns 1.02 ns 2.14 ns 25.72 *
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ZZ-1; however, the cane yield was significantly different 
between the years, genotypes and genotype×year.

Nutrients and enzymes activities of the ratooning cane
Soil chemical properties varied significantly (P ≤  0.05) 
among the 2 years for sugarcane rhizosphere soil, except 
AK, which was a non-significant effect for year and 
genotype × year. Compared to 2019, the soil nutrients 
increased effectively in 2020. These findings suggested 
that a sugarcane cropping strategy based on ratooning 
could effectively increase soil fertility. Root morphology 
across the years was significantly (p  ≤  0.05) different. 
However, their effect was non-significant for genotypes 
and genotype × year (Table 2). The ZZ-13 cultivar per-
formed better in terms of the number of roots, total root 
length, and root depth. Enzymatic activity was observed 
to be increasing with ratooning (Fig.  1). However, their 
effect was non-significant, except for S-CAT.

Correlation analysis among different morphological, 
enzymes, and nutrients
The yield was strongly positively correlated with TRL 
(0.90), S-UE (0.99), and the number of stalks (0.40), and 
moderately correlated with SSW (0.16), depth (0.16). 
Number of stalks was positively correlated with SSW 
(0.97), AK (0.63), S-UE (0.53), depth (0.97) TRL (0.77), 
and number of roots (0.94) (Fig. 2).

Microbial diversity analysis and sequencing details 
associated with consecutive ratooning
A total of 323,990 and 267,694 valid reads were obtained 
from the consecutive ratooning sugarcane rhizosphere in 
2019 and 2020, respectively. The details are given in sup-
plementary file S1. A total of 8988 and 4310 OTUs were 

detected at 97% similarity in the first and second ratoon 
consecutively. The rhizosphere bacterial community rich-
ness and diversity were calculated using Chao1, Ace, and 
Simpson, respectively. There were significant differences 
for OTU richness estimated by Chao1 (p  ≤  0.05) and 
bacterial diversity estimated by Shannon index (p ≤ 0.05) 
across consecutive years for the tested genotypes (Fig. 3). 
ZZ-13 showed a higher bacterial diversity and OTU rich-
ness in both years compared to ZZ-1. ZZ-13 exhibited 
more species richness in 2019 and 2020 as compared to 
ZZ-1. The Simpson index was high for ZZ-13 (0.9863) in 
2019 than ZZ-1 (0.9669); however, in 2020, there were 
no significant differences between the two genotypes 
for Simpson index. The richness and evenness of bacte-
rial community species varied across the two sugarcane 
crop cycles, indicated that the changes in soil chemical 
properties and root growth/exudates had modulated the 
microorganisms in the rhizosphere selectively.

Microbial community composition in consecutive 
ratooning
Based on the top 10 most abundant bacterium phyla 
analysis, sugarcane rhizosphere dominated proteobacte-
ria, actinobacteria, acidobacteria, chloroflexi, bacterio-
detes, and firmicutes (Fig.  4). Proteobacteria accounted 
for almost 47% of the total number of species present in 
the rhizosphere of both ratoon crops. However, the pro-
portion of some bacterial phyla varied during the second 
ratooning. For example, an abundance of acidobacte-
ria, chloroflexi, and firmicutes increased in the second 
ratooning. The results suggested the ability and response 
of bacterial communities towards ratooning crops. The 
abundance and occurrence of major bacterial taxa with 

Table 2  Effect of consecutive ratooning sugarcane on root morphology and soil nutrients

Each value is the mean of three replicates with standard error

TRL Total root length, SOC Soil organic matter, AN Total nitrogen, AK Available potassium, AP available phosphorous
* P < 0.01
** P < 0.001

Genotypes Roots (no) TRL (m) Depth (m) SOC (g/kg) AN (mg/kg) AK (mg/kg) AP (mg/kg)

2019
  ZZ-13 66.6 ± 15.1a 144 ± 28.5a 0.20 ± 0.03b 21.5 ± 1.6b 59.1 ± 2.8c 209.2 ± 3.5b 31.1 ± 2.5b

  ZZ-1 52.4 ± 9.29a 142 ± 49.1a 0.26 ± 0.08a 34.2 ± 1.4a 101.2 ± 3.9a 193.4 ± 4.2bc 42.6 ± 3.21a

2020
  ZZ-13 38.5 ± 8.2b 65.3 ± 18.25b 0.13 ± 0.03c 24.96 ± 1.5b 75.3 ± 2.5b 235.1 ± 3.5a 45.2 ± 4.5a

  ZZ-1 28.8 ± 7.8b 75.14 ± 16.4b 0.12 ± 0.02c 33.9 ± 1.4a 113.4 ± 2.19a 211.3 ± 4.2b 49.5 ± 6.6a

SOV
  Genotypes 1.5 ns 0.03 ns 4.54 ns 2260.2 ** 1702.7 ** 7007.1* 216.6 *

  Year 29.5 * 21.1* 21.74 * 34.7 * 2.57 ns 2.38 ns 93.5 *

  Genotype×Year 1.18 ns 0.08 ns 0.80 ns 76.95 * 457.4 * 928.4 ns 63.93 *
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increasing OTU number were displayed in both years 
(Fig. 5).

Microbial community structure
Principal coordinate analysis (PCA) using the Bray-Cur-
tis algorithm was carried out to investigate differences 
among the rhizosphere community across ratooning. 
The microbial community across the years was differ-
ent from each other (Fig. 6). The two-year samples were 
separated from each other, indicating different microbial 
compositions among the years. The first two principal 
components explained 88.9% of the total variation in the 
bacterial communities. The PC1 and PC2 explained 77.9 
and 11% variation, respectively. Moreover, similar results 
were also observed in hierarchical cluster analysis of the 
two varieties across ratooning years (Fig.  7). Accord-
ing to the results, the rhizosphere soil samples in 2019 
formed two groups in which ZZ-1 and ZZ-13 clustered 

separately, while in 2020, the samples clustered into three 
groups.

Discussion
The rhizosphere microbiome has rapidly evolved and has 
been a focus of interest for research communities in the 
last few decades. Plant efficiently enhanced soil microbes 
among soil and roots. The release of plant roots intrigues 
soil microorganisms nearby. Variations in microbial com-
munity composition do exist, however, between plant 
species and even between genotypes [21]. In this study, 
the differences between the plant morphological char-
acters rhizosphere bacterial populations of consecutive 
ratooning sugarcane were investigated using Illumina 
MiSeq high-throughput sequencing.

The diversity and abundance of bacterial popula-
tions were higher in ZZ-13 than ZZ-1, implying that 
the link between bacteria and the soil environment was 
more complicated, and the ecosystem was more stable 

Fig. 1  Rhizosphere enzyme activity of consecutive ratoon sugarcane. S-UE, soil urease; S-ACP, soil acid phosphatase; S-SC, soil sucrase; S-CAT, 
soil catalase. Box plots indicate value for each variety across years. The lowercase letter indicates the differences based on the LSD test (p < 0.05). 
Legends inside each subfigure indicate a significant level at genotypes, year, and genotype*year effect
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in ZZ-13. High soil microbial diversity is beneficial for 
positive plant-soil feedback and N nutrition availability 
in soil [22]. Microbial diversity and abundance may differ 
amongst cultivars of the same species due to biomass and 
root shape. For example, high-yielding cultivars have sig-
nificantly increased the root porosity and an abundance 
of certain microorganisms inferring that their large roots 
and porous soil eases gas exchange in the rhizosphere 
and influence the rhizosphere bacterial community [23]. 
It can also be observed from the field agronomic data 
of the two cultivars (Table 1), which showed that ZZ-13 
was substantially better performing than ZZ-1. Root 
morphology might have also affected the bacterial com-
munities. Fine roots might convey more nutrients and 
metabolites with a considerably large surface area from 
more extensive roots [24]. These characteristics could 
make them ideal for microbial colony proliferation, sug-
gesting that plants with more extensive roots might form 
beneficial associations with a broad microbial commu-
nity [25, 26], which appeared to be mirrored in ZZ-13. 

The beta diversity analysis revealed that the rhizosphere 
microbial communities were completely different dur-
ing the consecutive ratooning (Fig.  7). This indicated 
that the relative abundance of bacteria in the sugarcane 
rhizosphere could be explained by their quantity and 
composition of root exudates [27]. The majority of these 
secretions are primary metabolites like carbohydrates, 
organic acids, and amino acids [28], which are secreted 
by plant roots and spread to the soil [29], affecting the 
content of nutrients like C and N in the rhizosphere soil 
[30], and thus enriching the microbial community. The 
root exudates from sugarcane with different genotypes 
had a different effect on microbial communities’ colo-
nization, indicating that sugarcane root exudate could 
affect bacterial community shaping in the rhizosphere. 
Hence many root parameters such as total root length 
and diameter might also improve the absorption rate of 
N [31, 32]. From the analysis, consecutive ratooning and 
different cultivars substantially influenced the dominant 
bacterium species.

Fig. 2  Pearson correlation analysis for different parameters among consecutive ratooning. A color gradient denoting Pearson correlation coefficient 
displayed pairwise comparisons of environmental factors and morphological characters
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In comparison, Chloroflexi was much more abundant 
in ZZ-13 compared to ZZ-1 in the 2nd ratooning. Many 
bacterial species belonging to Chloroflexi are involved in 
nitrite oxidation [33], while those of alpha proteobacteria 
have been shown to have N fixing abilities [34]. Generally, 
because of changes in the root exudates and other metab-
olites, root morphology ZZ-13 and ZZ-1 might produce 
diverse rhizosphere bacterial populations, resulting in the 
variation in the use of nutrients, including N and P and 
the formation of different network topologies.

The differences between the bacterial communities 
in the consecutive ratooning rhizosphere were most 
perceptible in Actinobacteria, Acidobacteria, Chloro-
flexi, and firmicutes. The proportion of Actinobacteria 
and Acidobacteria increased in the 2nd ratooning by 7 
and 52.8%, respectively. Acidobacteria predominated in 
the 2nd ratoon crop, while proteobacteria, a vital plant 
growth promoter was observed in the 1st ratoon rhizo-
sphere. This was attributed to the improved crop growth 
and yield, as evidenced by morphological data. However, 
the relative abundance of Proteobacteria decreased with 
the ratooning of sugarcane, which needs further study 
to clarify that whether proteobacteria communities 

play a similar role in ratooning. The diversity of the soil 
microbial population was reflected in the abundance of 
soil microorganisms. The leading genera found in this 
study varied substantially between consecutive ratoon-
ing. Sugarcane engaged in complicated interactions with 
rhizosphere bacteria throughout the ratooning pro-
cess [5], as evidenced by the distribution of dominat-
ing bacteria in the rhizosphere soil. Microbial diversity 
in the rhizosphere is vital for plant growth and health 
[35]. The dominating taxa in the sugarcane rhizosphere 
were Conexibacter, Acidothermus, Sphingomonas, Bur-
kholderia, and Bradyzhizobium (Supplementary File 
S2). In previous studies, Sphingomonas has been found 
to potentially break down environmental contaminants 
and stimulate plant absorption and growth [36]. Sphin-
gomonas has also been the predominant antimicrobial 
agent in soil communities and limits plant pathogenic 
fungi growth [37]. Bradyrhizobium is a widespread soil 
bacterium capable of forming symbiotic connections 
with plant roots and nitrogen fixation [38]. However, the 
impacts of Sphingomonas, Bradyzhizobium, and Burk-
holderia on sugarcane ratooning ability, nutrients uptake, 
and root growth in the rhizosphere of sugarcane need 

Fig. 3  Alpha diversity indices for consecutive ratooning sugarcane. Different lowercase letters indicate the difference based on the LSD test 
(p ≤ 0.05). The legend on the top indicated the varieties. A-D chao1, Shannon, Simpson, and Ace index mean values from replicated samples for 
each variety across 2 years
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to be investigated further. Compared with the first sug-
arcane ratoon, some beneficial microbial groups such as 
Burkholderia, Bacillus, Occallatibacter, and Bradyzhizo-
bium increased significantly in the consecutive sugarcane 
ratoon crop. Such beneficial microbes might play a vital 
role in the ratooning sugarcane crop.

The assessment of soil environmental parameters 
revealed that SOC, AN, AK, and AP were significantly 
different between ZZ-13 and ZZ-1 (Table  2). A slight 
increase in the nutrients was observed, which might 
be attributed to many factors, including the degrada-
tion of leftover leaves, stem cuttings, and stubbles after 
harvesting. The microbial communities give accessible 
N to plants via biological N fixation and organic form 
mineralization, limiting N loss by retaining it in humus. 
Plant-microbial interactions impacting P usage are 
poorly understood. However, Arabidopsis mutants might 
increase bacterial communities in phosphate-rich soil, 
compete for phosphate with plants, and promote phos-
phate fixation [39]. Plant roots could assemble particular 
bacteria, allowing the P cycle to be enhanced [40].

The relationship is influenced by the rhizosphere’s bac-
terial community and the soil particles’ enzyme activity 
[41]. Soil enzymes are bioactive proteins found in soil, 
which are mostly produced by bacteria [42]. Soil enzymes 
play a crucial role in the soil nutrient cycle. They are inti-
mately linked to soil fertility and ecological sustainability, 

and their increased activity can boost nutrients input 
capability from plant soils [43]. Our research discov-
ered that S-UE, S-ACP, and S-CAT activity increased 
with consecutive ratooning most noticeably in ZZ-13 
rhizosphere soil, except S-SC. Urease is involved in the 
soil N cycle, reflecting soil health and vitality [44]; ure-
ase activity rises with the increased SOC in soil and has 
been linked to P and soil catalase (S-CAT). However, the 
physiological stimulus of root growth, such as branching 
or root hair development, mediated by Indole-acetic-acid 
and other hormones, could also increase plant P uptake. 
Furthermore, alterations in the microbial structure in 
the rhizosphere might impact the activity of numerous 
enzymes in the soil and affecting soil nutrients indirectly.

Conclusion
We compared the differences in the rhizosphere micro-
biome of two sugarcane genotypes, namely ZZ-13 and 
ZZ-1, in consecutive winter-initiated ratooning. Based 
on morphological field data and rhizosphere soil char-
acteristics, including enzymes, nutrients, and bacte-
rial microbiome, ZZ-13 was a promising genotype 
suited for ratooning in Guangxi, China. Furthermore, 
the abundance of Actinobacteria and Acidobacteria in 
follow-up ratoon suggested specific feedback towards 
consecutive ratooning. Alpha diversity metrics further 
confirmed more species richness and diverse bacterial 

Fig. 4  Relative abundance of major bacterial phyla in the rhizosphere of ZZ-1 and ZZ-13 in consecutive ratooning sugarcane
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communities. This finding will help understand thor-
ough interactions between rhizosphere microorganisms 
and ratoon sugarcane and lay the foundation for promot-
ing and maximizing yield as far as possible. Currently, we 
are identifying the response of ratoon sugarcane rhizos-
phere bacterial communities towards different levels of 
chemical fertilizers. Results will most like to have a sub-
stantial effect in enhancing sugarcane crop husbandry.

Methods
Plant material and experimental site
The sugarcane varieties used in this experiment were 
ZZ-1 and ZZ-13. ZZ-1 is offspring of Chinese germ-
plasm viz. ROC25 × YZ89–7, while ZZ-13 is offspring 
of foreign germplasm viz. HOCP01–157 × CP14–0969. 
The foreign germplasm from USA along with Chi-
nese germplasm was bred in state key laboratory for 

Fig. 5  A taxonomic abundance of rhizosphere samples in 2019; B Taxonomic abundance of rhizosphere samples in 2020. Heat tree analysis 
illustrating the taxonomic differences between the 2 years. The color gradient and the size of the node, edge, and label are based on samples and 
their OTU count
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conservation & utilization of subtropical agro-biore-
sources and cultivated in field station of the Guangxi 
University in Fusui, Chongzou, China. Both the varie-
ties are cultivated species used for sugar production in 
the Fusui region. The experimental research on these 
cultivars were compiled with the national guidelines of 
China.

The experiment was carried out in the field station 
of the Guangxi University in Fusui, Chongzou, China 
(22038′06″N,107054′15″E). The station is one of the 
major sugar planting areas in Guangxi Zhuang Auton-
omous Region. The climatic conditions for the region 
over the 2 years are given in Fig.  8. The annual mean 
temperature during both years was 24.1 °C, while the 
total annual precipitation during 2019 and 2020 was 
1770 and 1872 mm respectively. The annual mean 
humidity of the region during 2019 and 2020 was 
77.83 and 77.75% respectively. The region annual aver-
age sunshine was 247.41 h in 2019 and 197.33 h during 
2020.

Experimental design and samples collection
The experiment was arranged in a randomized com-
plete block design having three replicates per geno-
type. The total subplot area was 120 m2. Each variety 
was grown in a 30 m long block with 2 m line to line 

distance and 30 cm plant to plant distance. Agronomic 
practices such as weeding, fertilization etc. were kept 
uniform for all the replicates. During both grow-
ing seasons, the crop was utterly reliant on natural 
precipitation.

Field data was recorded over two consecutive 
years (2019–2020) in late December when the sugar-
cane was in the ripening phase. Morphological data, 
including the number of nodes, plant height, stem 
diameter, and internode length, were recorded on 30 
plants per replicate, and their average value was com-
puted. Each soil was analyzed in three replicates. The 
plant height was calculated with the help of a meter 
rod. The number of nodes in each plant was counted, 
and then their average value was taken. Stem diam-
eter and internode length were calculated with the 
help of a vernier caliper on every 10th internode from 
the plant top, and the average value was recorded. 
The soil adhered to the roots was collected as rhizos-
phere soil and was divided into three parts for further 
analysis. The 1st part was kept in a 50 mL sterilized 
centrifuge tube and stored at − 80 °C for DNA extrac-
tion, the 2nd part was kept for nutrient determina-
tion, and the 3rd part of the soil was used for enzyme 
measurement. Each step was performed with three 
biological replicates.

Fig. 6  Beta diversity analysis. Principal coordinates analysis of the rhizosphere soil among 2 years using the Bray-Curtis algorithm. Different colors 
and ellipses indicate the year
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Estimation of sucrose and theoretical yield
Before harvesting, sucrose content was measured 
using a portable refractometer ATAGO Pocket PAL-1 
(Atago Co. Ltd., Tokyo, Japan). The theoretical cane 
production was calculated according to the following 
equation [45].

(a)	 Single stalk weight (kg) = (stalk diame-
ter (cm))2 × (stalk height (cm) – 30) × 1 (g/
cm3) × 0.7854/1000.

(b)	 Cane yield (t/ha− 1) = single stalk weight (kg) × stalk 
numbers (no ha− 1) /1000.

Root analysis and soil chemical properties
Root samples were washed with tap water to remove the 
soil particles using a 1 mm sieve mesh to minimize root 
loss. The root morphology was then calculated by scan-
ning the root samples with an STD4800 WinRhizo Scan-
ner (Regent Instruments Inc., Canada). The sieved soil 
samples using 2 mm mesh were subjected to different 
experiments to calculate SOC, AN, AP, and AK. Soil sam-
ples were oxidized with K2Cr2O7.H2SO4 and titrated with 
FeSO4 to determine the SOC content [46]. The soil AN 
was determined according to the procedure defined by 
[47]. Available phosphorous was calculated by the method 
prescribed by [48], and AK quantity was measured fol-
lowing the method of [49]. Similarly, acid phosphatase 
(S-ACP), catalase (S-CAT), urease (S-UE), and sucrase 
(S-SC) activity were measured using soil enzyme kits [50].

DNA extraction and PCR amplification
According to the manufacturer’s instructions, rhizos-
phere soil DNA was extracted from each sample using 
the FastDNA spin kit for soil. The quantity of extracted 
DNA was measured by NanoDrop 2000 (Thermo Fisher 
Scientific, Wilmington, USA). The bacterial v5-v6 
region of 16 s rRNA was amplified by 799F (forward 
primer, 5-AACMGGA​TTA​GAT​ACC​CKG-3) AND 
1193R (reverse primer 5-ACG​TCA​TCC​CCA​CCT​TCC​
-3) [51]. The DNA samples were used as the template 
for amplification. In 25 μL of the reaction mixture, the 
PCR reactions were carried out containing 20 ng DNA 
template, 0.5 μL dNTP, 10 μL Buffer, 0.25 μL DNA poly-
merase, 5 μL of High GC enhancer, and 1.0 μL of each 
primer. The PCR thermal conditions were as follows: 
The initial denaturation was carried at 98 °C for 5 mins 
followed by 25 cycles at 94 °C, 52 °C for 30 s (annealing), 
72 °C for 30 s (extension), and 72 °C for 10 mins (final 
elongation). PCR amplifications were performed using 
a BioRad S1000 thermocycler (Bio-Rad Laboratories, 
CA, USA). The products were mixed equally after the 
reaction, and the target bands were detected using 2% 
agarose gel electrophoresis. The targeted bands were 
recovered through QIAamp DNA Micro Kit (Qiagen, 
Valencia, CA, USA). Subsequently, DNA libraries were 
constructed with the Illumina TruSeq DNA sample 
preparation kit (Illumina, San Diego, CA, USA). High 
throughput sequencing of 16 S rRNA was carried out 

Fig. 7  Hierarchal cluster analysis. A cluster analysis of rhizosphere 
samples during 2019 in the studied genotypes; B cluster analysis of 
rhizosphere samples during 2020
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using an Illumina HiSeq2500 platform, and 250 bp 
paired-end reads were generated (Gene Denovo   Bio-
technology Co., Ltd., Guangzhou, China).

Data analysis
Raw tag sequences were screened for quality and assem-
bled to clean reads using FLASH software. The clean 
reads identified were assigned to the corresponding sam-
ple to obtain valid sequences for each sample. QIIME 

(Quantitative Insights Into Microbial Ecology v.1.9.0) 
software was used to further carry out the downstream 
analysis. The operational taxonomic unit (OTU) was 
assigned to representative sequences by processing the 
pair end data as an input file in QIIME software. Using 
the UCLUST algorithm and Green genes as a refer-
ence database, OTUs were picked up at a 97% similarity 
threshold [52]. Each OTU sequence from both ratoon 
samples represented the taxonomy, including phylum 

Fig. 8  A Monthly mean rainfall and temperature data during the 2 years, B Humidity and sunshine data during the 2 years
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class, order, family, genus, and species within each sam-
ple. Microbiome Analyst [53] was used to further analy-
ses the output OTU table. The input data were rarefied to 
the minimum library size with total sum normalization 
using the default functions. The sequences were filtered 
at a minimum of 4 with a 20% prevalence in the sample, 
and the low variance filter was set at 10% using the inter-
quartile range. Relative abundance of different taxa was 
calculated for each sample. The diversity indices includ-
ing Chao1, ACE, Simpson, and Shannon were calculated 
for each sample, and a rarefaction curve was drawn using 
Mothur (v.121.1). Within a single sample, the diversity 
was described by alpha diversity. Beta diversity analysis 
was carried out with the R function to evaluate differ-
ences or similarities between the consecutive ratooning.

Statistical analysis
Mean values obtained from each replicate were subjected 
to test the significance and effect of consecutive ratoon-
ing on the studied parameters. Two-way analysis of vari-
ance (ANOVA) was used to test the differences between 
genotypes among years, then the individual means of 
each parameter was compared by LSD test. Origin soft-
ware was used to illustrate figures.
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